Development of dopaminergic neurophysiology supports improvements in the use of optimal reward learning strategies through adolescence

1/27/2023

Take homes

 Reward learning shows developmental improvements through adolescence, driven by a change in the ability to identify an optimal learning rate, and apply it during goal oriented decision making

1. Task & RL Modeling

 Striatal dopamine contributes to the development of not only momentary identification of rewards, but generation of task <u>2. PET/Tissue Iron</u> heuristics and learning strategies

DA physiology modulates both cortical and sub-cortical functional circuitry, in particular in the vmPFC, to support 3. fMRI changes in learning heuristics

Adolescence is a time of heightened reward sensitivity

- Rewards have a disproportionate effect on cognitive performance and decision making in adolescence compared to adulthood (e.g., Geier et al, 2012)
- These differences are supported by heightened activity of the ventral striatum (VS) (Silverman et al, 2015; Padmanabhan et al, 2011)
- While heightened reward reactivity may have maladaptive consequences (risky behaviors, experimental substance use and abuse, etc), it is also critical for learning about the structure of action-outcome associations, developing social interactions, and more

Silverman et al 2015 meta-analysis

Introduction

Reward learning matures through adolescence

- Development of learning rates is highly task-dependent, potentially reflecting a shift towards more task-optimal learning (Decker et al 2015, Master et al 2019)
- Age-related decreases in RL *temperature* (i.e., undirected exploration) have been somewhat more consistently reported (Christakou et al., 2013; Decker et al., 2015; Javadi et al., 2014; Palminteri et al., 2016; Rodriguez Buritica et al., 2019)
- Changes in reward learning may reflect shifts in learning strategies, not just quantitative changes in RL parameters:
 - Increasing use of model-based learning strategies (Raab & Hartley, 2019)
 - Increased "metacontrol", i.e., dynamic adaptation to task demands (Bolenz & Eppinger, preprint)
 - Increased valence-independent learning (Hauser et al., 2015; Rodriguez Buritica et al., 2019; van den Bos et al., 2012)

Contribution of striatal activation to reward learning

• Striatal (Peters & Crone, 2017) and hippocampal (Davidow et al, 2016) reward-related activity supports reward learning

Peters & Crone, 2017

Contribution of striatal dopamine to reward learning

• Task-related changes in [¹¹C]Raclopride binding are associated with learning in adults

Heterogeneous pattern of DA development through adolescence

Cortical Dopamine Development

How do developmental changes in dopamine neurophysiology drive functional changes supporting the development of reward learning behaviors?

Subjects

- Full sample
 - 145 subjects (77 AFAB, 306 total visits, 1-3 visits per participant)
 - Ages 12.0-29.8 (mean 20.5±4.7)

Methods

• Task

RL model

- What is the per-trial reward expectation/prediction error?
 - Reinforcement learning (RL) model to predict trial-wise responses
 - Maintain an internal state value ($V_{i,j}$) of expected value for each location
 - After each movement choice S, update internal expected value (V) based on learning rate (v) and prediction error

$$V_{i,j}(t+1) = V_{i,j}(t) + \upsilon \cdot (R - V_{i,j}(t))$$
$$(i,j) \in S$$

Select next move based on a softmax function of the two expected values
Probability curves for different beta values

Results

• Developmental improvements in reward learning performance

Results

• Developmental improvements in reward learning performance

• RL model parameters do not show univariate changes with age

 But, parameters are highly correlated, and what makes someone a good at the task appears to be multivariate in nature • RL composite parameters predict learning

• Composite parameter PC3 increases significantly with age

 Effect is most dramatic at time 1 (novelty/task familiarity effect?), but main effect of age persists when controlling for visit

Tissue iron as a developmentally sensitive indirect marker or striatal dopaminergic neurophysiology in the NAcc

 Developmental increases in tissue iron mediate increases in the use of optimal RL learning strategies (via PC3)

• Replicates in both taT2* and R2'

 Development of striatal dopaminergic neurophysiology through adolescence contributes not just to heightened reward sensitivity, but to developmental increases in the ability to make reward-driven choices based on a task-optimal learning strategy.

• What neural computations/activity support this?

- Two ways to analyze fMRI data:
 - #1: Non-model based

Expectation (hash mark, all trials):

Feedback (rewarded vs non-rewarded):

- Two ways to analyze fMRI data:
 - #2: Parametric (model-based)
 - Example voxel:

Prediction Error

- Two ways to analyze fMRI data:
 - #2: Parametric (model-based)

- Many comparisons possible:
 - 8 contrasts of interest (2 traditional + 6 model-based)
 - For each, we are potentially interested in:
 - Main effect
 - Association with
 - Age
 - PC3
 - NAcc tissue iron
 - Interactions
 - Age*PC3
- Group analysis performed using 3dLME
- Cluster correction (ongoing) using ACF-corrected smoothness estimates

• Age-related changes in reward **expectation**

- Predominantly age-related decreases in BOLD expectation response, widely distributed
- Driven mostly by decreases in the mean (not proportional) activation across all trials

• Age-related changes in reward **response**

- Predominantly age-related decreases in BOLD reward response, including Nacc
- Most closely associated with changes in the mean response on +PE (i.e., rewarded) outcome

• Associations with PC3 (age independent) during expectation (only):

- Increased use of optimal RL strategies is associated with lower *expectation*-related activation of the putamen, L hippocampus & amygdala, and posterior (STS, PCC) regions

Age*PC3 interaction in VMPFC, PPC reward response •

rl_pc3

Summary

- Reward learning improves through adolescence, driven in part by the use of more optimal & reliable (and less exploratory) learning strategies
- Use of these strategies is associated with age-related increases in striatal tissue iron, suggesting a link to DAergic neurophysiology
- Functionally, development of these RL strategies in adulthood is supported by agedependent activation of the vmPFC & PPC
 - Activation of these regions in adolescence may instead promote more exploratory strategies?
- Combined with decreased VST reward responses, this may represent a shift from subcortical to cortically-dependent processing supporting the transition of reward learning from adolescence to adulthood