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Defining Cognitive Flexibility

Adaptively responding to changing environmental demands, contexts, or goals: switching
tasks, switching strategies to solve a problem, thinking differently about a situation

Task Shifting: Shifting between tasks
Set Shifting: Shifting between relevant features of stimuli within a task; attention shifting

Reversal Learning: Updating learned reward-related contingencies



Defining Neural Variability

Variance-based: SD of neural activity over time; mean successive square differences
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Defining Neural Variability

Variance-based: SD of neural activity over time; mean successive square differences

Frequency-based: oscillatory power (frequency-specific variation); 1/f
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Defining Neural Variability

Variance-based: SD of neural activity over time; mean successive square differences
Frequency-based: oscillatory power (frequency-specific variation); 1/f

Information theory based: entropy-based measures (irregularity of time series, 1.e, the
distribution of temporal patterns in the data); measures of dimensionality (PCA)
* Multiscale entropy (entropy at different timescales)

* Weighted permutation entropy (re-weights entropy by distributional width of signal
to control for variance differences)



Defining Neural Variability
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Defining Neural Variability

Variance-based: SD of neural activity over time; mean successive square differences
Frequency-based: oscillatory power (frequency-specific variation); 1/f
Information theory based: entropy-based measures; dimensionality measures

Brain state variability: shifting between dominant patterns of whole-brain activity or
relative expression (amplitude) of a given brain state



Table 1. Overview of common measures to quantify neural variability

Measure family Example measure Neural signal Overview Resources
Variance-based time series variance all types variance (or SD) of neural activity VarTbX (https://github.com/
measures across time (Cohen and LNDG/vartbx); in-built functions
Maunsell, 2009; Garrett of most programming and
et al., 2013a) analyses platforms (R, Python,
MATLAB)
Fano factor spiking variance divided by the mean (or In-built functions of most
“mean-matched”) across programming and analysis
conditions before variance platforms
estimation (Churchland
etal.,, 2010)
Frequency-based spectral power LFP, MEG/EEG, (time-resolved) estimates of Fieldtrip (Oostenveld et al.,
measures BOLD oscillatory power, more 2011): https://www.

Information-theoretic
measures

“Shared” variability

1/f exponent

MSE

WPE

noise correlations

dFC

LFP, MEG/EEG

LFP, MEG/EEG,
BOLD

LFP, MEG/EEG

spiking

MEG/EEG,
BOLD

commonly in low frequencies
(e.g., 2-10 Hz), computed using
Fourier-based methods
(Pachitariu et al., 2015)

separation of oscillatory and
aperiodic activity by analyzing
peaks and steepness of power
spectra; typically not time
resolved, but estimated from
data sections (e.g., single trials)

irregularity of time series at
different temporal scales; based
on recurring patterns (Costa

et al., 2002; Kosciessa et al.,
2020b); also, time resolved and
for sparse data (Grandy

et al., 2016)

time-resolved irregularity of time
series using symbolic patterns;
amplitude information re-
introduced by weighting with
variance (Bandt and Pompe,
2002; Fadlallah et al., 2013)

correlation of post-stimulus
spike distributions (across trial)
between pairs of neurons
(Cohen and Kohn, 2011)

time-resolved functional
connectivity estimates based on
correlations between time series
of different brain regions
(Hutchison et al., 2013)

fieldtriptoolbox.org/; Python
MNE (Gramfort et al., 2013):
https://mne.tools/stable/index.
html; BrainStorm (Tadel et al.,
2011): https://neuroimage.usc.
edu/brainstorm/

FOOOF (Donoghue et al., 2020):
https://github.com/fooof-tools/
fooof; eBOSC (Kosciessa et al.,
2020a): https://github.com/
jkosciessa/eBOSC; IRASA (Wen
and Liu, 2016): https://github.
com/raphaelvallat/yasa/

mMSE (Kloosterman et al., 2020;
Kosciessa et al., 2020b):
modification of original MSE,
controlling power-related, scale-
specific biases in estimation
(https://github.com/LNDG/
mMSE; https://www.
fieldtriptoolbox.org/example/
entropy_analysis/)

see code within Waschke
etal.,, 2019

spike sorting: KiloSort
(Pachitariu et al., 2016); Spyke
(Swindale and Spacek, 2014);
SpyKING Circus (Yger

et al., 2018)

GIFT: https://trendscenter.org/
software/gift/; DynaConn
(Sakoglu et al., 2010); CONN
(Whitfield-Gabrieli and Nieto-
Castanon, 2012)

It 1s also important to note that
different variability measures do not
necessarily trace back to the same
generating neural mechanism.
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Developmental Changes in Cognitive Flexibility

Task and set shifting improve from childhood to adolescence (most rapid improvements
~7-9 years old) and improve at a slower rate from adolescence to adulthood

Reversal learnin eaks 1n adolescence, due to less perseverate “Win—stay” behavior and
b/
faster remapping of stimulus responses

How do developmental changes in cognitive flexibility relate to neural variability?



Developmental Changes in Neural Variability

Variance-based: declines with age in resting BOLD (increases in task??)
Frequency-based: oscillatory power declines, 1/f flattens (in EEG)
Information-theory based: multi-scale entropy increases (in EEG and maybe BOLD)

Brain state variability: Montez paper, increased time spent in modular states and
dominant brain states, state flexibility ?



Developmental Changes in Neural Variability

BOLD entropy, 18 children, 14 adults
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Developmental Changes in Neural Variability

Resting-state BOLD MSSD age 6-80

Linear Increase
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Relationships
Between EEG
Entropy and

RT /Accuracy
Development

Mclntosh et al., 2008, Plos Comp Bio

N, Age: 55 children (8-15 years), 24 adults (20-33 years)
Cognitive flexibility: N /A, face recognition task
Neural variability: MSE in EEG
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Medaglia et al., 2018, NeuroImage
O
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Armbruster-Genc et al., ] Neurosci, 2016
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Mclntosh et al., 2008, Plos Comp Bio
O

Relati hi N, Age: 157 ages 20-86
clations IPS Cognitive flexibility: fluid cognition (NIH toolbox)

Between Resting Neural variability: BOLD SD

BOLD SD and

Lower resting BOLD SD in
the highlighted brain

regions is assoclated with

Fluid Cognition:
Lifespan

better fluid cognition,
controlling for age




Relationships
Between Task
BOLD SD and
Fluid Cognitive:
Aging

Mclntosh et al., 2008, Plos Comp Bio

N, Age: 18 young adults (20-3), 27 older adults (56-85)
Cognitive flexibility: fluid cognition (NIH toolbox)
Neural variability: BOLD SD

Young adults show bigger increase in BOLD SD from
fix to the three tasks in the brain regions highlighted
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Mclntosh et al., 2008, Plos Comp Bio

Summary

Greater cognitive flexibility generally linked to:
Lower BOLD variability during rest

Higher BOLD variability during task, bigger increase
in BOLD variability from rest-task

Higher EEG entropy

More time in dominant brain states but also more
flexible switching (in young adults)
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BOLD variability down with age during rest
Oscillatory power down with age; 1/f flatter with age
Multiscale entropy up with age

* Balancing of E/I (increase in inhibitory strength, pruning of interconnected excitatory
synapses) + growth of cortical myelination leads to reduced prevalence and synchrony of
low-frequency spontaneons neural activity 2 BOLD amplitude decrease, EEG power decrease,
1/f flattening

* Lower synchronized spontaneous activity allows for stimulus-induced or task-relevant neural
activity to be more easily detected = higher circuit signal-to-noise



Strong Gamma Frequency Oscillations in the Adolescent Prefrontal Cortex

Zhengyang Wang, Balbir Singh, Xin Zhou, and Christos Constantinidis
Journal of Neuroscience 6 April 2022, 42 (14) 2917-2929; DOI: https://doi.org/10.1523/JNEUROSCI.1604-21.2022
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Stimulus onset quenches neural variability: a widespread cortical phenomenon

Abstract

Neural responses are typically characterized by computing the mean firing rate, but response
variability can exist across trials. Many studies have examined the effect of a stimulus on the
mean response, but few have examined the effect on response variability. We measured
neural variability in 13 extracellularly recorded datasets and one intracellularly recorded
dataset from seven areas spanning the four cortical lobes in monkeys and cats. In every case,
stimulus onset caused a decline in neural variability. This occurred even when the stimulus
produced little change in mean firing rate. The variability decline was observed in membrane
potential recordings, in the spiking of individual neurons and in correlated spiking variability
measured with implanted 96-electrode arrays. The variability decline was observed for all
stimuli tested, regardless of whether the animal was awake, behaving or anaesthetized. This
widespread variability decline suggests a rather general property of cortex, that its state is

stabilized by an input.



BOLD variability down with age during rest

Oscillatory power down with age; 1/f flatter with age
Multiscale entropy up with age

Balancing of E/I (increase in inhibitory strength, pruning of interconnected excitatory
synapses) + growth of cortical myelination leads to reduced prevalence and synchrony of
low-frequency spontaneons neural activity 2 BOLD amplitude decrease, EEG power decrease,
1/f flattening

Lower synchronized spontaneous activity allows for stimulus-induced or task-relevant neural
activity to be more easily detected = higher circuit signal-to-noise

The reduction in strength and power of spontaneous activity (desynchronization) =2 results in
an increase 1n signal entropy
Greater entropy allows for more possible dynamical states to be reached =2 criticality

“cognitive flexcibility emerges when a neural system avoids locking into a stereotypical, rhythmic pattern of activity, while instead
continuously exploring its full dynamic range”



Zdorovtsova et al., 2023, bioRxiv

R 1 t. h. N, Age: 46 children, 8-13 years old
clationsnips Cognitive flexibility: NA, WASI-I, SDQ
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Mclntosh et al., 2008, Plos Comp Bio

Neuromodulatory
Mechanisms

nature neuroscience

Explore content v About the journal v  Publish with us v

nature > nature neuroscience > articles > article

Published: 15 November 2009

Attention improves performance primarily by
reducing interneuronal correlations

Marlene R Cohen &J & John H R Maunsell

Arousal (measured by time-resolved pupil dilation) is tightly
linked to reductions in low-frequency power, both in non-
human animals (McGinley et al., 2015a, 2015b; Neske et al.,
2019; Reimer et al., 2014) and humans (Dahl et al.,

2020; Meindertsma et al., 2017; Waschke et al.,, 2019). In
addition to LC NE activity and its cortical projections (the LC-NE
system), cholinergic activity from the basal forebrain also affects
arousal and is linked to pupil size (Reimer et al., 2016). Both NE
and cholinergic activity affect neural excitability and suppress
the generation of synchronous activity in lower frequencies
(McCormick, 1992; McGinley et al., 2015a), leading to a
reduction in low frequency power, a phenomenon often called
“desynchronization” (Fries et al., 2001; Harris and Thiele,

2011; Mitchell et al., 2009).

We found that attention adaptively decreased correlated
variability in a population of neurons
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Developmental Changes in Cognitive Flexibility

What is the role of adolescent reversal learning?
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The Variability-Stability-Flexibility Pattern: A Possible Key to Languag =
Understanding the Flexibility of the Human Mind Cate gOl’iZ ation

Thea Ionescu

Abstract

Flexibility is a defining characteristic of our species. The current literature presents cognitive flexibility
as having several meanings; this lack of a single definition may hinder work on understanding the
concept. In this article, I begin with describing the variability—stability—flexibility pattern in the
development of various abilities and then argue that as part of this chain, flexibility can be considered a
property of the cognitive system and not in itself an ability. The implications of and challenges to this
view are discussed. This view can foster progress in the understanding of cognitive flexibility: It can
serve as a unifying framework in which to study the dynamic flow of stability and flexibility in the
functioning of the cognitive system.



