Journal Club 2/6/2020

Maria Perica

Outline

- MRS 101
- Spectral quality
- LCModel output
- Proposed updates to procedure
- Metabolites we collect

MRS aka Chemical Shift Imaging

• Measure metabolites noninvasively in vivo

- Organic compound structure determination
- Same principles as conventional MRI

н-с-о-н

Hydrogen Atom Electron Cloud Model

Nucleus

Electron Cloud

- Magnetic field that a molecule experiences depends on chemical structure and the environment in which it is
- Slightly different effective field
- CS gives rise to the spectrum

<u>Shielding</u> and <u>deshielding</u>: nucleus "experiences" weaker or stronger magnetic field as a result of the electron density

Upfield and downfield

- More shielded
stronger field must be applied

Wade, L.G., Organic Chemistry, 5th Edition

From spectrum to molecule

- Location of peaks □ shielding
- Number of peaks

 Number of H
- Intensity of signal □ Number of that type of H
- Signal splitting
 Number of protons on adjacent atoms
- Integral
 Concentration

Gallery of spectral quality and artifacts

Good spectrum

Tkac et al., 2009

Cecil & Jones, 2001

Kreis, 2004

Motion

Lipids

Coordinates: Before

Proposed updates

2. Remove SFG, WM voxels, one thalamus voxel because they are too close together and not statistically independent

1. Move all peripheral voxels away from outer-volume lipids

3. Remove MOG voxels because bad dataquality as a result of not optimized acquisition

LCModel

Current workflow

Updates

Proposed new quality check/ exclusionary criteria

Spectral inspection:

- Doubled peaks (motion)
- Lipid artifact
- Linewidth

LCModel check

- Model fit
- Baseline
- Residuals

Data • CRLB > 20 Metabolite s that we collect

- Aspartate
- Choline + GPC
- Cre
- GABA
- Glutamate
- Glutamine
- Glutathione
- Glucose

Disclaimer: we know very little about the actual biochemical roles of each of these (especially in humans), and even less about exactly what MRS picks up on NAA + NAAG

Creatine

- Cr+PCr = tCr
- Present in both neurons and glia
- Energy metabolism
- Use of Cre as ratio denominator
 - Correct for:
 - Stationarity assumption
 - Absolute quantification studies mixed/contradictory, but most find no changes
 - Introduces more variability than absolute metabolite quantification (Li et al., 2003)
 - Metabolite-to-creatine ratios estimated by LCModel more accurate than absolute (Kanowski et al., 2004)

Glutamate and GABA

- In MRS: "Glutamate release and recycling is a major metabolic pathway that cannot be distinguished from its actions of neurotransmission." (Rothman et al, 2002)
- Intracellular Glu: ~10mM; extracellular glu: 2 uM
- Intracellular GABA: 1 mM; extracellular GABA: 2 uM
- Exists in several metabolic pools
- Almost any pool may be available to be used as NT

Walls et al., 2015

Glutamine

- Precursor to glutamate
- Glu stored as Gln in glia
- Small amounts of Gln also produced from GABA
- Glu+Gln=Glx

Glutathione

- Synthesized from glutamate
- Antioxidant, mitochondrial functions
- Generally elevated by stress
- Problematic to measure even at ultra-high field (14T)

NAA + NAAG

- Role of NAA unclear; neuronal marker
 - Decreases with age
- NAAG can act as a transmitter; correlates with cognitive ability (Rahn et al., 2012)
- Separate measures likely unreliable (conversation with Victor, 2020)

NAAG

NAA

Choline + GPC

- Role of Cho somewhat unclear
 - Membrane composition changes
- Cho correlated with acetylcholine
- Cho/PCho + GPC
 - Separate measures unreliable

Aspartate

- Amino acid
- Excitatory??
 - ¯_(ツ)_/¯
 - NMDA receptor agonist
 - Previously thought of as possibly excitatory NT, but recent evidence suggests otherwise (Herring et al., 2015)

Glucose

- Energy supply
- Levels of brain glucose related to levels of blood glucose more than to rate of brain glucose use (Rae, 2014)

Myoinositol

- Sugar synthesized from glucose
- Located mainly in glia
- Role:
 - membrane composition
 - second-messenger signaling pathways

Taurine

- Amino acid
- Role:
 - Osmoregulation
 - modulation of transmitter action via calcium