Generalized Additive Models (and Generalized Additive *Mixed* Models) for non-linear relationships.
See
Hierarchical GAMs. Relevant for some of our nested designs choices where we look at ROI x Age interactions across some brain measure (ROI nested in person).
gam
slower but gamm
gives lm
and gam
part.gamm
(need gam
)checkgam
scam
if monotonic#In gamm4 gamm4::gamm4(myelin ~ s(age, k = 4, fx = F) + sex, REML = TRUE, random=~(1|subject_id), #random intercept family = gaussian(link = "identity"), data = df) #In mgcv:gamm mgcv::gamm(myelin ~ s(age, k = 4, fx = F) + sex, method = c("REML"), random = list(subject_id=~1), #random intercept family = gaussian(link = "identity"), data = df) #In mgcv:gam mgcv:gam(myelin ~ s(age, k = 4, fx = F) + sex + method = c("REML"), s(subject_id, bs = 're'), #random intercept, subject_id *must* be a factor family = gaussian(link = "identity"), data = df) #### Random intercept + slopes in GAM #### #In mgcv:gamm mgcv::gamm(myelin ~ s(age, k = 4, fx = F) + sex, method = c("REML"), random=list(subject_id=~1, subject_id=~0+age), #uncorrelated random intercepts and slopes family = gaussian(link = "identity"), data = df) mgcv::gamm(myelin ~ s(age, k = 4, fx = F) + sex, method = c("REML"), random=list(subject_id=~1+age), #correlated random intercepts and slopes family = gaussian(link = "identity"), data = df) #In mgcv:gam mgcv:gam(myelin ~ s(age, k = 4, fx = F) + sex, s(subject_id, bs = 're') + s(subject_id, age, bs = 're'), data = myelin.glasser.7T$projfrac0.3, method = 'REML')